Printed Pages: 3

NEC-304

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : **131315**

Roll No.

B. Tech.

(SEM. III) (ODD SEM.) THEORY EXAMINATION, 2014-15

SWITCHING THEORY AND LOGIC DESIGN

Time: 2 Hours]

[Total Marks: 50

Notes:

- (1) Attempt all questions.
- (2) All question carry equal marks.
- 1. Attempt any four parts of the following:

 $3.5 \times 4 = 14$

- (a) Convert the following numbers into desired base:
 - (i) $(A6BF5)_{16} = (?)_2 = (?)_{Grav}$
 - (ii) (17-135) using 2's complement
- (b) Simplify the following Boolean expression to a minimum number of literals:
 - (i) $\overline{AC} + ABC + A\overline{C} + A\overline{B}$
 - (ii) $(\overline{x}\overline{y} + z) + z + xy + wz$
- (c) Simplify the following expression into Product of sum(POS) form
 - (i) $AB\overline{C} + A\overline{B}D + BCD$
 - (ii) $AC\overline{D} + \overline{C}D + A\overline{B} + ABCD$

131315]

1

Contd...

Use Quine-Mc-Clusky (QM) method to solve the (d) following function:

$$F(A,B,C,D) = \Sigma(5,7,8,9,10,11,14,15)$$

Simplify the Boolean function 'Y' together with don't care condition 'd' using k-map and implement it with two level NAND gate circuit.

$$Y = BD + BC\overline{D} + A\overline{B}C\overline{D}$$

- For the Hamming code 1001101001 received at the receiver end, correct this code for error if any?
- 2. Attempt any two parts of the following: $6 \times 2 = 12$
 - Design a BCD to 7 segment decoder. Assume positive logic, minimize the function.
 - Design the following Boolean function using 4×1 Multiplexer.

$$F(A,B,C,D) = \sum m(0, 1, 3, 4, 8, 9, 15)$$

- Design and explain the logic and circuit of 4 bit magnitude comparator.
- Attempt any two parts of the following: 3.
- 6×2=12 (Distinguish between synchronous and asynchronous digital sequential circuit. Design Module-5 Counter.
 - Explain race around condition and its remedy in brief. Realise T flip flop to SR flip flop.
 - Write down the classification of semiconductor memories. Draw and explain the programmable logic array (PLA).

- Attempt any two parts of the following:
 - Explain hazard and its types. Define critical race and non critical race. Also explain the elimination of hazards in asynchronous circuits.
 - With the help of diagram, explain the operations of Universal shift regular.
 - An asynchronous sequential circuit described by (c) the following excitation and output functions.

$$Y = X_1 X_2 + (X_1 + X_2)y$$
 and $z = y$.
Where X_1 and $X_2 =$ Input variables
 $Y =$ Excitation function
 $Z =$ Output function.

- Draw the logic diagram of the circuit.
- Derive transition table (ii)
- (iii) Output map and obtain a flow table.

 $6 \times 2 = 12$